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Abstract We consider a class of second order degenerate elliptic operators arising
from second order stochastic differential equations in R

n perturbed by noise. We study
realizations of such operators in L1 spaces with respect to their (explicit) invariant
measure, proving that they are m-dissipative.
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1 Introduction

We consider a class of Kolmogorov operators associated to second order stochastic
differential equations in R

n, such as{
y′′(t) = −My(t) − y′(t) − DU(y(t)) + W′(t),
y(0) = y0, y′(0) = x0,

(1.1)

where M is a symmetric positive definite matrix, U ∈ C1(Rn, R) and W is a standard
Brownian motion in R

n.
Equation (1.1) is a model for the motion y(t) of a particle of mass 1 subject to a

force field −My − DU(y) perturbed by noise. The term −y′(t) describes the friction
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to the motion, proportional to the velocity. See e.g. [2] and the references therein.
Setting y′(t) = x(t) the differential equation in (1.1) is rewritten as a system,

d
dt

(
x(t)
y(t)

)
= B

(
x(t)
y(t)

)
−

(
DU(y(t))

0

)
+

(
W′(t)

0

)
, (1.2)

where

B =
( −I −M

I 0

)
, (1.3)

and I is the identity matrix in R
n.

It is well known that if U is sufficiently smooth and it has bounded second order
derivatives, problem (1.1) has a unique strong solution (x(t), y(t)).

The corresponding Kolmogorov operator in R
2n is given by

(Kϕ)(x, y) = 1
2

�xϕ − 〈My + DyU(y) + x, Dxϕ〉 + 〈x, Dyϕ〉, (1.4)

and its formal adjoint K∗ is given by

(K∗ρ)(x, y) = 1
2

�xρ − 〈x, Dyρ〉 + 〈My + DyU(y) + x, Dxρ〉 + nρ. (1.5)

It is easy to see that the function ρ(x, y), defined by

ρ(x, y) = e−(〈My,y〉+|x|2)e−2U(y)

satisfies K∗ρ = 0, and that

Z :=
∫

R2n

ρ(x, y)dx dy < +∞, (1.6)

provided that U is bounded from below.
In fact, under suitable assumptions it follows from [4] that problem (1.2) possesses

a unique probability invariant measure µ given by µ(dx, dy) = Z−1ρ(x, y)dxdy.
Therefore it is of interest to study the realization of the Kolmogorov operator

K, defined in a suitable domain (see Sect. 3 below), in the spaces Lp(R2n, µ), under
minimal assumptions on U.

The simplest situation is n = 1, M = 1, U ≡ 0, in which case µ is the probability
Gaussian measure in R

2 and K is the Kolmogorov operator

(Kϕ)(x, y) = 1
2

ϕxx + xϕy − (y + x)ϕx.

For general dimension n and for general matrix M, if U ≡ 0 then K is still a hypoelliptic
Kolmogorov operator, because it can be written as

(Kϕ)(z) = 1
2

Tr QD2ϕ(z) + 〈Bz, Dϕ(z)〉
where the matrices

Q =
(

I 0
0 0

)
, B =

( −I −M
I 0

)

satisfy the controllability or hypoellipticity condition

Rank(Q1/2, BQ1/2) = 2n.
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Integration by parts shows that for each regular u, v with good behavior at infinity
(say for instance u, v ∈ C∞

0 (R2n)) we have∫
R2n

Ku v dµ = −1
2

∫
R2n

〈Dxu, Dxv〉dµ +
∫

R2n

(〈Dyu, Dxv〉 − 〈Dxu, Dyv〉)dµ, (1.7)

where Dx, Dy denote the gradients with respect to the variables x, y only. Therefore
K is not symmetric in L2(R2n, µ). It is naturally associated to the quadratic form

a(u, v) = 1
2

∫
R2n

〈Dxu, Dxv〉dµ −
∫

R2n

(〈Dyu, Dxv〉 − 〈Dxu, Dyv〉)dµ,

which is well defined and continuous in H1(R2n, µ). This is the space of the functions
u ∈ L2(R2n, µ) ∩ H1

loc(R
2n) whose first order derivatives belong to L2(R2n, µ), and it

is a Hilbert space with its natural scalar product

〈u, v〉H1(R2n,µ) :=
∫

R2n

u v dµ +
∫

R2n

〈Du, Dv〉dµ.

We have

a(u, u) = 1
2

∫
R2n

|Dxu|2dµ, u ∈ H1(R2n, µ),

therefore for any λ > 0 the form (u, v) 
→ a(u, v) + λ〈u, v〉L2 is not coercive, and the
Lax-Milgram lemma cannot be used to find solutions to

λ〈u, v〉L2 + a(u, v) = 〈f , v〉L2 , v ∈ H1(R2n, µ), (1.8)

i.e. to find weak solutions to λu − Ku = f for f ∈ L2(R2n, µ). However, taking v = u
and v = sign u (or a smooth approximation of sign u) in (1.7), it follows in a more or
less standard way that the realization of K with domain C∞

0 (R2n) (or another space
of good enough functions) is dissipative in L2(R2n, µ) and in L1(R2n, µ). By interpo-
lation, it is dissipative in Lp(R2n, µ) for each p ∈ [1, 2], and hence it is closable with
dissipative closure Kp.

In this paper we focus our attention on the operator K1. We show that if∫
Rn

(|U(y)|2 + |DU(y)|2)e−2U(y)dy < +∞, (1.9)

then K1 is m-dissipative in L1(R2n, µ), i.e. it is dissipative and the range of λI − K1 is
the whole L1(R2n, µ) for each λ > 0.

By the Lumer–Phillips Theorem it suffices to prove essential m-dissipativity. This is
done by perturbation, using existence, uniqueness, and regularity results for the case
U ≡ 0. In this case Assumption (1.6) is satisfied because M is positive definite.

Every m-dissipative operator with dense domain is the infinitesimal generator of
a strongly continuous contraction semigroup. Denoting by T(t) the semigroup gener-
ated by K1, we prove that ∫

R2n

T(t)f dµ =
∫

R2n

f dµ
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for each t > 0 and f ∈ L1(R2n, µ), i.e. µ is an invariant measure for T(t).
We notice that assumption (1.9) does not guarantee existence in the large of the

strong solution to (1.1). If all the solutions to (1.1) exist in the large, for each Borel
measurable and bounded function f it is natural to have the equality

(T(t)f )(x0, y0) = E[f (x(t, x0, y0), y(t, x0, y0))], t > 0, (1.10)

where (x(t, x0, y0), y(t, x0, y0)) is the solution to (1.2) with initial data x(0, x0, y0) = x0,
y(0, x0, y0) = y0.

But in general it is not clear whether the solutions to (1.2) exists in the large or
not, while the left hand side of (1.10) still makes sense and it can be used to solve in a
weak sense (1.2) using the theory of Dirichlet forms. See [7], [3], [8], [10].

For a detailed treatment of nondegenerate second order elliptic operators in L1

spaces with respect to invariant measures we refer to [9]. To our knowledge, this is
the first study in the degenerate case.

2 The case U ≡ 0

We need a preliminary study of the realization of K in the space Cb(R2n) of the con-
tinuous and bounded functions from R

2n to R, in the case U ≡ 0. To this aim we use
some results of [6], to which we refer for more details, proofs and comments.

It is well known that the solution of (1.1) is given by the Ornstein-Uhlenbeck
process

(
x(t)
y(t)

)
= etB

(
x0
y0

)
+

t∫
0

e(t−s)B
(

dW(s)
0

)
.

The corresponding transition semigroup—the Ornstein-Uhlenbeck semigroup—is
defined by

(R(t)ϕ)(z) = 1
(2π)n/2(det Qt)1/2

∫
R2n

e−〈Q−1
t ξ ,ξ〉/2ϕ(etBz − ξ)dξ , t > 0,

z = (x, y) ∈ R
2n, (2.1)

where Qt is the matrix

Qt =
t∫

0

esBQesB∗
ds, 0 ≤ t ≤ +∞. (2.2)

Note that the eigenvalues of B have negative real part, so that esB, esB∗
decay expo-

nentially as s → +∞ and Qt is well defined at t = +∞ too.
Setting for Re λ > 0

(F(λ)ϕ)(z) =
+∞∫
0

e−λt(R(t)ϕ)(z)dt, z ∈ R
2n, ϕ ∈ Cb(R2n),

then F(λ) is one to one in Cb(R2n) and it satisfies the resolvent identity in the half–plane
Re λ > 0. Consequently there exists a unique closed operator L : D(L) 
→ Cb(R2n)
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such that

F(λ) = (λI − L)−1, Re λ > 0.

L is called the generator of R(t). Note that R(t) is not strongly continuous in Cb(R2n)

and even in BUC(R2n), see [6, Proposition 6.3], so that it has no infinitesimal generator
in the usual sense.

L is a realization in Cb(R2n) of the Kolmogorov (or degenerate Ornstein–
Uhlenbeck) operator L defined by

(Lu)(x, y) = 1
2

�xu(x, y) − 〈My + x, Dxu(x, y)〉 + 〈x, Dyu(x, y)〉. (2.3)

Proposition 2.1 Let u ∈ D(L), i.e. u = R(λ, L)f for some λ > 0 and f ∈ Cb(R2n). Then
Dxi u ∈ Cb(R2n) for i = 1, . . . , n, and there is C > 0, independent of u and f , such that

‖Dxi u‖∞ ≤ C√
λ

‖f‖∞. (2.4)

If in addition f ∈ C1
b(R2n),(1) then u, Dxi u ∈ C1

b(R2n) for i = 1, . . . , n, and there is
C > 0, independent of u and f , such that

‖ |Du| ‖∞ ≤ C
λ

‖ |Df | ‖∞, ‖Dxixj u‖∞ + ‖Dxiyj u‖∞ ≤ C√
λ

‖ |Df | ‖∞. (2.5)

Moreover, Lu is given by the right hand side of (2.3).

Proof We use the following estimate from [6, Proposition 3.2],

|(DxR(t)f )(z)| ≤ ct−1/2 ‖f‖∞, f ∈ Cb(R2n), t > 0, z ∈ R
2n. (2.6)

Replacing in the formula for the resolvent, (2.4) follows.
Concerning (2.5), since DR(t)f = etB∗

R(t)Df for each f ∈ C1
b(R2n) and t > 0, then

Dxi R(t)f ∈ C1
b(R2n) for f ∈ C1

b(R2n), i = 1, . . . , n, and D(Dxi R(t)ϕ) = Dxi(DR(t)ϕ) =
Dxi e

tB∗
R(t)Df , so that

‖Dxi R(t)f‖C1
b(R2n)

≤ ct−1/2 ‖f‖C1
b(R2n)

, f ∈ C1
b(R2n), t > 0, i = 1, . . . , n. (2.7)

Replacing again in the formula for the resolvent, (2.5) follows. From [6, Theorem 6.2]
we know that u is a distributional solution to λu−Lu = f , in the sense of the tempered
distributions. Since u is regular enough, it is a classical solution. ��

In the following we shall need that Lu is nonpositive at each maximum point and
nonnegative at each minimum point, which is obvious for smooth functions u but it is
not immediate for general u ∈ D(L).

Lemma 2.2 Let u ∈ D(L). At any local maximum (resp. minimum) point z0 for u we
have Lu(z0) ≤ 0 (respectively Lu(z0) ≥ 0).

1 C1
b(R2n) is the space of all bounded and continuously differentiable functions from R

2n to R with

bounded derivatives, endowed with the norm ‖f‖C1
b(R2n)

= ‖f‖∞ + ∑2n
i=1 ‖Dif‖∞.
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Proof The statement is obvious if u ∈ C1(R2n) and it has continuous derivatives
Dxixi u, i = 1, . . . , n. For general u ∈ D(L), let z0 be a local maximum point for u. Let
r > 0 be such that u(z0) ≥ u(z) for |z − z0| ≤ r. Possibly adding a constant, we may
assume that u(z0) > 0 and u(z) ≥ 0 for each z ∈ B(z0, r). Let θ be a smooth cutoff
function, such that 0 ≤ θ(z) < 1 for each z �= z0, θ(z0) = 1, θ ≡ 0 outside B(z0, r),
and all the second order derivatives of θ vanish at z0. Then the function

ũ(z) := u(z)θ(z), z ∈ R
2n,

has z0 as its unique maximum point, it belongs to D(L) and

Lũ = Lu · θ + Lθ · u + 〈Dxu, Dxθ〉. (2.8)

This can be seen as follows. Fix λ > 0 and set λu − Lu = f , then approach f by a
sequence (fk) of uniformly bounded functions belonging to C1

b(R2n) that converge
to f uniformly on each compact subset of R

2n (for instance, we may approximate f
by convolution with smooth mollifiers). Then R(t)fk converges to R(t)f uniformly on
each compact subset of R

2n, and by dominated convergence uk := R(λ, L)fk converges
pointwise to u = R(λ, L)f and Dxi uk converges pointwise to Dxi u for i = 1, . . . , n.
By difference, Luk converges pointwise to Lu. Since L(ukθ) = Luk · θ + Lθ · uk +
〈Dxuk, Dxθ〉 by Proposition 2.1, letting k → +∞ we get (2.8).

Now we go on as in the proof of [5, Proposition 3.1.10]. Since λ̃u − Lũ := ϕ is
uniformly continuous and bounded, there is a sequence (ϕk) of uniformly bounded
functions belonging to C1

b(R2n) that converge to ϕ uniformly on R
2n. The functions

ũk := R(λ, L)ϕk belong to C1
b(R2n) and they are twice continuously differentiable with

respect to the x variables. They converge uniformly to u = R(λ, L)ϕ, and by difference
Lũk converges uniformly to Lũ.

Since ũk converges to ũ in L∞ and ũ ≡ 0 outside B(z0, r), also ũk has maximum
points for k large enough, and since z0 is the unique maximum point of ũ, there
is a sequence (zk) of maximum points for ũk that goes to z0 as k → +∞. Since
Lũk(zk) ≤ 0, then also Lũ(z0) ≤ 0. But Lũ(z0) = Lu(z0), and the statement follows.

��

3 The general case

Here we assume that (1.9) holds. It follows that∫
R2n

(|U(y)|2 + |DU(y)|2)dµ < +∞, (3.1)

i.e. (x, y) 
→ U(y) ∈ H1(R2n, µ). We define the operator K on the domain of L by

(Ku)(x, y) = (Lu)(x, y) − 〈DU(y), Dxu(x, y)〉, u ∈ D(L). (3.2)

Note that 〈DU, Dxu〉 ∈ L1(R2n, µ) for each u ∈ D(L) because Dxu is bounded by
Proposition 2.1 and |DU| ∈ L2(R2n, µ) ⊂ L1(R2n, µ).

Let us prove two basic identities.
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Proposition 3.1 For any u ∈ D(L) we have∫
R2n

Ku u dµ = −1
2

∫
R2n

|Dxu|2dµ. (3.3)

More generally, if g ∈ C1(R) has bounded derivative g′, then∫
R2n

Ku g(u)dµ = −1
2

∫
R2n

|Dxu|2g′(u)dµ. (3.4)

Proof Both (3.3) and (3.4) follow just integrating by parts if u ∈ D(L) ∩ C1
b(R2n)

and also the second order derivatives Dxiyi u are continuous and bounded. If not,
we set λu − Lu = f , and we approach f by a sequence (fk) of uniformly bounded
functions belonging to C1

b(R2n) that converge to f uniformly on each compact subset
of R

2n, as in the proof of Lemma 2.2. The functions uk := R(λ, L)fk, Dxi uk and Luk
converge pointwise to u, to Dxi u, and to Lu, respectively, with dominated conver-
gence. Moreover each uk is in D(L)∩C1

b(R2n) and its second order derivatives Dxiyi uk
are continuous and bounded. Therefore, (3.3) and (3.4) are true with uk replacing u.
Letting k → ∞ we obtain (3.3) and (3.4) for u. ��

Using (3.4) we can prove that K is dissipative in L1(R2n, µ).

Proposition 3.2 For each u ∈ D(L) and λ > 0 we have

‖u‖L1(R2n,µ) ≤ 1
λ

‖λu − Lu‖L1(R2n,µ).

Proof Set λu − Ku = f and

gk(w) = 2
π

arctan(kw), k ∈ N, w ∈ R.

The sequence (gk(u(z))) approaches sign u(z), as k → ∞, at each z, and for each k
we have ∫

R2n

λu gk(u)dµ −
∫

R2n

Ku gk(u)dµ =
∫

R2n

f gk(u)dµ.

By formula (3.4) we get∫
R2n

Ku gk(u)dµ = −1
2

∫
R2n

|Dxu|2g′
k(u)dµ ≤ 0,

so that ∫
R2n

λu gk(u)dµ ≤
∫

R2n

f gk(u)dµ ≤
∫

R2n

|f |dµ

and letting k → +∞ we obtain λ‖u‖L1(R2n,µ) ≤ ‖f‖L1(R2n,µ) by dominated conver-
gence. ��

Now we need some a priori estimates in the sup norm for the solution to λu −
Lu − 〈F, Dxu〉 = f with a vector field F ∈ Cb(R2n, Rn). They yield dissipativity of
L + 〈F, Dx·〉 in Cb(R2n), and they will be obtained extending the Maximum Principle
to our situation.
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Lemma 3.3 Let F ∈ Cb(R2n, Rn) and let u ∈ D(L). For λ > 0 set λu−Lu−〈F, Dxu〉 = f .
Then

‖u‖∞ ≤ 1
λ

‖f‖∞.

If in addition f (z) ≥ 0 for each z ∈ R
2n, then u(z) ≥ 0 for each z ∈ R

2n.

Proof Once Lemma 2.2 is established the proof is similar to the one in the case of
nondegenerate principal part; we write it below for the reader’s convenience.

If there is z0 ∈ R
2n such that ‖u‖∞ = ±u(z0) the first statement follows immediately

from Lemma 2.2. If not, we may assume without loss of generality that ‖u‖∞ = sup u
and that there is a sequence (zk) of points in R

2n such that |zk| → +∞, u(zk) ≥
‖u‖∞ − 1/k.

Let θ be a smooth cutoff function, such that 0 ≤ θ(z) ≤ 1 for every z, θ ≡ 1 on
B(0, 1), θ ≡ 0 outside B(0, 2). Set θk(z) = θ((z − zk)/|zk|), so that

sup
k∈N

‖Lθk + 〈F, Dxθk〉‖∞ < ∞,

and set

uk(z) = u(z) + 2
k

θk(z), z ∈ R
2n.

Then uk converges to u uniformly, and for every k, sup uk = max uk. Let wk ∈ R
2n be

any maximum point for uk. Then uk(wk) goes to ‖u‖∞ as k → +∞. Moreover,

λuk(wk) − Luk(wk) − 〈F(wk), Dxuk(wk)〉
= f (wk) + 2

k
(λθk(wk) − Lθk(wk) − 〈F(wk), Dxθk(wk)〉) ,

(3.5)

so that

uk(wk) ≤ 1
λ

‖f‖∞ + 2
kλ

‖λθk − Lθk − 〈F, Dxθk〉‖∞.

Letting k → ∞ we get the first statement.
To prove the second statement we follow the same procedure. It is enough (in fact,

it is equivalent) to show that if f (z) ≤ 0 for each z, then u(z) ≤ 0 for each z. Assume
by contradiction that f (z) ≤ 0 for each z but u(z) > 0 at some z. Then sup u > 0. If
sup u = max u and z0 is a maximum point then λu(z0) − Lu(z0) > 0, a contradiction.
If u has not maximum points, define wk, uk as above. Since f (wk) ≤ 0, formula (3.5)
implies

uk(wk) ≤ 2
kλ

‖λθk − Lθk − 〈F, Dxθk〉‖∞

that converges to 0 as k → +∞. Therefore, sup u = limk→+∞ max uk ≤ 0, and the
second statement follows. ��

Since U ∈ H1(R2n, µ), it may be approximated by a sequence of C∞
0 (R2n) functions,

as the next lemma shows.

Lemma 3.4 There is a sequence of C∞
0 (R2n) functions Uk = Uk(y) such that

lim
k→∞

‖Uk − U‖H1(R2n,µ) = 0.
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Proof Let ν be the measure in R
n defined by ν(dy) = exp(−2U(y)−〈My, y〉)dy. From

[1, Lemma 2.2] we obtain that C∞
0 (Rn) is dense in H1(Rn, ν), and therefore there is

a sequence of functions Uk in C∞
0 (Rn) that approach U in H1(Rn, ν). The functions

(x, y) 
→ Uk(y) belong to C∞
0 (R2n) and

‖Uk − U‖H1(R2n,µ) ≤ πn/2

Z
‖Uk − U‖H1(Rn,ν),

where Z is defined by (1.6), and the statement follows. ��
Proposition 3.5 Let Uk be the functions given by Lemma 3.4. For any λ > 0 and
f ∈ Cb(R2n) the equation

λuk − Luk + 〈DUk, Dxuk〉 = f , (3.6)

has a unique solution uk ∈ D(L).
Moreover, there is λk > 0 such that if λ > λk and f ∈ C1

b(R2n) then Dxi uk ∈ C1
b(R2n)

for every i = 1, . . . , n.

Proof Setting λuk − Luk = ϕ, Eq. (3.6) is equivalent to

ϕ = −〈DUk, DxR(λ, L)ϕ〉 + f (3.7)

Using Corollary 2.1, we see that the operator ϕ 
→ −〈DUk, DxR(λ, L)ϕ〉 is a contrac-
tion in Cb(R2n) if λ is large enough, say λ > λ0. In this case (3.6) has a unique solution
uk in D(L), uk = R(λ, L)ϕ where ϕ is the unique solution of (3.7) in Cb(R2n). Since
the operator Kk defined by

Kku := Lu − 〈DUk, Dxu〉, u ∈ D(L)

is dissipative in Cb(R2n) by Corollary 3.3, Eq. (3.6) is uniquely solvable in D(L) for
any λ > 0.

Using again Corollary 2.1, we see that ϕ 
→ −〈DUk, DxR(λ, L)ϕ〉 is a contraction
in C1

b(R2n) if λ is large enough, say λ > λk. Therefore if f ∈ C1
b(R2n), Eq. (3.7) has

a unique solution ϕ ∈ C1
b(R2n), which coincides with the unique solution in Cb(R2n),

and uk = R(λ, L)ϕ has the claimed regularity properties by Proposition 2.1. ��
Now we are ready to prove the main results of the paper.

Theorem 3.6 K is essentially m–dissipative in L1(R2n, µ). Therefore, the closure K1 of
K in L1(R2n, µ) is m–dissipative.

Proof We have to show that for each λ > 0 the range of λI −K is dense in L1(R2n, µ).
Since Cb(R2n) is dense in L1(R2n, µ), it is enough to show that each f ∈ Cb(R2n) may
be approximated in L1(R2n, µ) by a sequence of functions belonging to the range of
λI − K.

For each k ∈ N let uk ∈ D(L) be the solution of (3.6). By Proposition 3.5 we know
that Dxuk is continuous and bounded, and so we can write

λuk − Kuk = f + 〈DU − DUk, Dxuk〉. (3.8)

We claim that

lim
k→∞

∫
R2n

|〈DU(y) − DUk(y), Dxuk(x, y)〉|dµ = 0. (3.9)
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To this aim we need an estimate on the L2-norm of |Dxuk|. Multiplying both sides of
(3.8) by uk, integrating over R

2n and taking into account (3.3) yields∫
R2n

u2
k dµ + 1

2

∫
R2n

|Dxuk|2dµ =
∫

R2n

fuk dµ +
∫

R2n

〈DU − DUk, Dxuk〉uk dµ.

It follows that∫
R2n

|Dxuk|2dµ ≤ 2‖f‖L1(R2n,µ)‖uk‖∞ + 2
∫

R2n

|〈DU − DUk, Dxuk〉uk|dµ. (3.10)

By the Maximum Principle (Corollary 3.3),

‖uk‖∞ ≤ 1
λ

‖f‖∞. (3.11)

Using (3.11) and then the Hölder inequality, we get

∫
R2n

|〈DU − DUk, Dxuk〉uk|dµ

≤ 1
λ

‖f‖∞

⎛
⎜⎝ ∫

R2n

|DU − DUk|2dµ

⎞
⎟⎠

1/2 ⎛
⎜⎝ ∫

R2n

|Dxuk|2dµ

⎞
⎟⎠

1/2

≤ 1
4

∫
R2n

|Dxuk|2dµ + 1
λ2 ‖f‖2∞

∫
R2n

|DU − DUk|2dµ. (3.12)

Consequently, by (3.10) it follows that∫
R2n

|Dxuk|2dµ ≤ 4
λ

‖f‖2∞ + 4
λ2 ‖f‖2∞

∫
R2n

|DU − DUk|2dµ. (3.13)

This yields (3.9); we have in fact∫
R2n

|〈DU − DUk, Dxuk〉|dµ

≤
⎛
⎜⎝ ∫

R2n

|DU − DUk|2dµ

⎞
⎟⎠

1/2 ⎛
⎜⎝ ∫

R2n

|Dxuk|2dµ

⎞
⎟⎠

1/2

≤
⎛
⎜⎝ ∫

R2n

|DU − DUk|2dµ

⎞
⎟⎠

1/2 ⎛
⎜⎝ 4

λ
+ 4

λ2

∫
R2n

|DU − DUk|2dµ

⎞
⎟⎠

1/2

‖f‖∞

by (3.12), and the claim follows from the dominated convergence theorem.
Therefore, K is essentially m–dissipative in L1(R2n, µ). By the Lumer–Phillips

Theorem, its closure K1 is m–dissipative. ��
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Let T(t) be the strongly continuous contraction semigroup generated by K1. In the
following Proposition we collect some further properties of T(t). We denote by 11 = 11
the constant function with value 1.

Proposition 3.7 The following statements hold.

(i) T(t)1l = 1l, for each t > 0.
(ii) If f ≥ 0 a.e., then T(t)f ≥ 0 a.e. for each t > 0.

(iii) The measure µ is invariant for T(t), i.e. for each t > 0 and f ∈ L1(R2n, µ)∫
R2n

T(t)f dµ =
∫

R2n

f dµ.

Proof

(i) Since 1l belongs to D(L) ⊂ D(K1) and K11l = K1l = 0, it follows that T(t)1l = 1l,
for each t > 0.

(ii) If f ∈ Cb(R2n), then R(λ, K1)f = limk→∞ uk where the functions uk are the
ones used in the proof of Theorem 3.6. Indeed, setting fk := λuk − Kuk we
have proved that fk goes to f in L1(R2n, µ); therefore uk = R(λ, K1)fk goes
to R(λ, K1)f in L1(R2n, µ) as k → ∞. But if f (x, y) ≥ 0 for each (x, y) then
uk(x, y) ≥ 0 for each (x, y) by Lemma 3.3, and therefore u(x, y) ≥ 0 for each
(x, y).
If f ∈ L1(R2n, µ) then R(λ, K1)f = limk→∞ R(λ, K1)fk, where (fk) is any se-
quence of functions in Cb(R2n) that converges to f in L1(R2n, µ). If f (x, y) ≥ 0
a.e. we may choose a sequence (fk) such that fk(x, y) ≥ 0 for each (x, y). Then
(R(λ, K1)fk)(x, y) ≥ 0 for each (x, y) and therefore (R(λ, K1)f )(x, y) ≥ 0 for
almost all (x, y).

(iii) Let f ∈ C1
b(R2n), fix k ∈ N and λ > λk where λk is given by Proposition 3.5, and

let uk be the functions used in the proof of Theorem 3.6. By Proposition 3.5, the
derivatives Dxixj uk and Dxiyj uk, i, j = 1, . . . n, are continuous and bounded. We
may integrate by parts and obtain

∫
R2n

Kuk dµ = 0,

i.e. ∫
R2n

K1R(λ, K1)(f − 〈DUk − DU, Duk〉)dµ = 0, λ > λk.

The function λ 
→ ∫
R2n K1R(λ, K1)g dµ is holomorphic in the halfplane Re λ > 0 for

every g ∈ L1(R2n, µ). Therefore,∫
R2n

K1R(λ, K1)(f − 〈DUk − DU, Duk〉)dµ = 0, λ > 0,

and letting k → +∞∫
R2n

K1R(λ, K1)f dµ = 0, λ > 0, f ∈ C1
b(R2n).
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Since C1
b(R2n) is dense in L1(R2n, µ), then∫

R2n

K1R(λ, K1)f dµ = 0, λ > 0, f ∈ L1(R2n, µ).

Since D(K1) is the range of R(λ, K1) for each λ > 0, this is equivalent to∫
R2n

K1u dµ = 0, u ∈ D(K1),

i.e. µ is infinitesimally invariant for K1, and it implies∫
R2n

R(λ, K1)f dµ = 1
λ

∫
R2n

f dµ λ > 0, f ∈ L1(R2n, µ),

so that for every k ∈ N∫
R2n

R(λ, K1)
kf dµ = 1

λk

∫
R2n

f dµ λ > 0, f ∈ L1(R2n, µ),

and for every f ∈ L1(R2n, µ) and t > 0∫
R2n

T(t)f dµ = lim
k→+∞

∫
R2n

(
k
t

)k

R
(

k
t

, K1

)k

f dµ =
∫

R2n

f dµ.

Statement (iii) is so proved. ��
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